If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2-20t-1=0
a = 5; b = -20; c = -1;
Δ = b2-4ac
Δ = -202-4·5·(-1)
Δ = 420
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{420}=\sqrt{4*105}=\sqrt{4}*\sqrt{105}=2\sqrt{105}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-2\sqrt{105}}{2*5}=\frac{20-2\sqrt{105}}{10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+2\sqrt{105}}{2*5}=\frac{20+2\sqrt{105}}{10} $
| -3/2x+8=-5 | | 4(4x-3)=5(2x+5) | | 3a-4=-a | | 12+3x+6=5(x-2) | | 3x–4+1=–2x–5+5x | | 5x+35x-10=40x+70 | | 5x+6.92=3x+10 | | 2(x-8)=6(2x-12) | | -9m=-7.2 | | t+(-7.2)=2.5 | | 5x+5+6x+7x-5=180 | | 5t^+10t-45=0 | | 7.9=3n-4 | | 5x+5+6x+7x-5=180° | | 1(x-3)=7 | | x^2-4x+5=x^2-2x+1 | | 2x(x-6)=180 | | -28.5-4.5a=-5(9a+7.5) | | -3y+38=y^2 | | 15x+8=15x+8 | | -2x=-4-7 | | 9=x^2+4x+3 | | 3.2=-o.4 | | 6.4x-4.9=30 | | 16t^2-40t-6=0 | | 35=16+n | | 4(3m)+4=2(6m+8) | | 33×+3y=1 | | 7x+9x-8=4(4x+4) | | 17.5+4=-6.5(3x-6 | | -x-1/4=2/4 | | 2x+5+x+3x+10=5x-1 |